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Summary

General aim: describe jummp modelling in finace through some
relevant issues.

I Lecture 1: Black-Scholes model

I Lecture 2: Models with jumps

I Lecture 3: Optimal stopping for processes with jumps

I Lecture 4: Symmetry and skewness in Lévy markets



Mathematical modeling in finance

We assume we have two possibilites of investment:

I A riskless asset, named bond, that pays a continuously
compounded interest r ≥ 0. Its evolution is modeled by

dBt

Bt
= rdt, B0 = 1.

The solution of this differential equation is

Bt = ert .

I A risky asset, denoted by

St = S0eXt ,

where {Xt} is a stochastic process defined in a probability
space (Ω,F ,P), satisfying X0 = 0.



Options

In this model we introduce a third inversion possibility, a third
asset, that we call an option, that is a contract that pays

f (ST ) (1)

at time T to its holder.

I The asset S is the underlying.

I If f (x) = (x − K )+ we have a call option,

I If f (x) = (K − x)+ we have a put option.

I When T in (1) is fixed in the contract, the option is european.

I In the case that T can be chosen by the holder of the option,
we call it an american option.

Problem: How this option can be priced, what is the fair or
reasonable price of this contract at t = 0. We begin studying

possible models for the risk asset S , specifying the stochastic
process X , called the log-price.



Brownian Motion

In 1900, Louis Bachelier introduced a model for the Brownian
motion (observed in the nature by Robert Brown in 1826) in order
to model the evolution of asset price fluctuations in the Paris stock
exchange.
The brwonian motion or Wiener process, defined in (Ω,F ,P) is a
stochastic process W = (Wt)t≥0 such that

I W0 = 0,

I has continuous trajectories,

I has independent increments: if 0 ≤ t1 ≤ · · · ≤ tn, then

Wt1 ,Wt2 −Wt1 , . . . ,Wtn −Wtn−1

are independent random variables.

I Wt −Ws is a centered gaussian random variable with variance
t − s, i.e.

Wt −Ws ∼ N (0, t − s).



Let us remind that X is a gaussian (or normal) random variable
with mean µ and variance σ2 (we denote X ∼ N (µ, σ2)) when its
probability distribution is

Φ(x) =

∫ x

−∞

1√
2πσ

e−
(u−µ)2

2σ2 du

The density is known as the gaussian bell, given by the formula

φ(x |σ) =
1√
2πσ

e−
(x−µ)2

2σ2 .



Some consequences

I The random variable Wt is centered normal, and has variance
t.

Wt ∼ N (0, t)

I The increment ∆W of the process, is N (0,∆t). Let us
consider (∆W )2. We have

E ((∆W )2) = ∆t, Var((∆W )2) = 2(∆t)2

Then, if ∆t → 0, the variance is smaller than the expectation,
this means that the variable aproximates its expectation and
we denote this fact by

(∆W )2 ∼ ∆t, another writing: (dW )2 = dt



Black Scholes model (BS)

This is a continuous time model in t ∈ [0,T ] and has two assets:

I B = (Bt)t∈[0,T ] that evolves deterministically, as

dBt

Bt
= rdt, B0 = 1,

where r is the interest rate. B can be thought as a bond.

I The price of a stock S = (St)t∈[0,T ] has a risky evolution,
modelled by a random process, according to the equation

dSt

St
= µdt + σdW , S0 = x ,

where
I µ is the mean return,
I σ si the volatility
I W is a Brownian motion.



Itô’s Formula

I In order to give sense to the expression “dW ” we review Itô’s
Formula.

I Black and Scholes relies on some mathematical tools, mainly
stochastic calculus and partial differential equations.

I Itô’s formula is a generalization of the chain rule for usual
differential calculus to differentiatite processes of the form
f (Wt)

I It resumes the new rules governing the stochastic calculus.

I Our departure point is the equality

(dW )2 = dt.



Let f : R→ R be a regular function (with continuous derivatives
up to order 2) Taylor expansion for f gives

f (x)− f (x0) = f ′(x0)∆x +
1

2
f ′′(x0)(∆x)2 + . . .

Usually, the second summand is neglected with respect to the first
one, but in the stochastic case, denoting x = Wt and x0 = Wt0 ,
we have

(∆x)2 = (∆W )2 ∼ ∆t

because ∆W ∼
√

∆tN(0, 1) makes

E (∆W )2 = ∆t, Var((∆W )2) = 2(∆t)2 << E (∆W )2.

The contribution of this summand is of the same order of the first
one. The other terms are effectively of higher order.



Consider now a regular function f = f (x , t) of two variables. With
similar arguments, it can be proved that

f (Wt , t)− f (W0, 0) =

∫ t

0
fx(Ws , s)dWs +

1

2

∫ t

0
fxx(Ws , s)ds

+

∫ t

0
ft(Ws , s)ds,

that is Itô’s formula. A short notation for this formula, is

df (Wt , t) = fx(Wt , t)dWt +
1

2
fxx(Wt , t)dt + ft(Wt , t)dt.



Coments

I The first integral is a stochastic integral∫ t

0
fx(Ws , s)dWs

and is defined as a limit of sums of the type

n−1∑
i=0

fx(Wti )(Wti+1 −Wti )

I The second integral is

1

2

∫ t

0
fxx(Ws , s)ds

appears due to the second term in Taylor expansion, and
makes the rules of stochastic calculus different from that of
usual calculus.



An example of application of Itô’s formula

Consider f (x) = x2. We have

ft = 0, fx = f ′ = 2x , fxx = f ′′ = 2.

We obtain

f (Wt)− f (W0) = W 2
t =

∫ t

0
(2Ws)dWs +

1

2

∫ t

0
2ds

=

∫ t

0
(2Ws)dWs + t,

that is different from the formula

y 2 =

∫ y

0
(2x)dx .

In this case we get an additional term.



Economic Brownian Motion

Bachelier (1900) proposes to model the evoluation of a stocks
through

Lt = L0 + σWt + νt,

where Wt is a Brownian Motion. As Wt is gaussian, Lt can take
negative values.
In 1965 P. Samuelson proposes the model

Gt = G0 exp(σWt + νt),

for the prices of a stock. G is called Economic (or Geometric)
Brownian motion.



Let us see that with this definition, the process G verifies the
definition of the risky asset in Black and Scholes model. As Gt is a
function of W , we can apply Itô’s formula, considering

f (x , t) = G0 exp(σx + νt).

We have
Gt = f (Wt , t),

the partial derivatives are

fx(x , t) = σf (x , t), fxx(x , t) = σ2f (x , t), ft(x , t) = νf (x , t),

obtaining

dGt = df (Wt , t) = σGtdWt +
1

2
σ2Gtdt + νGtdt.



If we divide by G , we obtain

dGt

Gt
= (ν +

1

2
σ2)dt + σdWt

= µdt + σdWt

where we denote µ = ν + 1
2σ

2.
In conclussion, the economic brownian motion verifies the
definition of the risky asset in BS model.



As µ = ν + 1
2σ

2 the formula for S is

St = S0 exp

[
σWt +

(
µ− 1

2
σ2

)
t

]
Observe that the term 1

2σ
2t comes from fxx , the new term in Itô’s

formula.
Conclussion: The geometric brownian motion is the generalization
of the the continuosly compound interest formula, if we add a
differential noise at every moment. Let us compare

dB = B(rdt), dS = S(µdt+σdW).



Option pricing

A portfolio in BS model is a pair of stochastic processes
π = (at , bt) that represents the amount at of bonds and bt of
shares of the stock at time t.
The value of the portfolio π at t is

V π
t = atBt + btSt .

In order to compute the price V (S0,T ) of an european option with
reward f (ST ) Black and Scholes proposed to construct a portfolio
that resulted equivalent to hold the option. More precisely the
proposed the portfolio to be (1) replicating for the option and (2)
self-financing.
In a general mathematical model of a financial market if such a
portfolio exists, we say that the market is complete.



Let us see in detail this facts. Consider a portafolio π = (at , bt)
such that:

I Replicates the option, this means that at the excercise time T
the value of the portfolio coincides with the value of the
option:

V π
T = aT BT + bT ST = f (ST ).

I It is self-financing: the variation in the value of the portfolio is
a consequence only of the variation of the prices of the assets
B and S (in other terms, we do not take nor put money
during the period [0,T ]). Mathematically, this condition is
formulated as

dV π
t = atdBt + btdSt .

The price at time t = 0 of such a portfolio is deined as the rational
price of the option, that is

V (S0,T ) = a0B0 + b0S0.



Construction of the portfolio
Black and Scholes proved that the replicating and self-financing
portfolio exists, and is unique, giving then the rational price of the
call option.
In order to find this portfolio, we look for a function H(x , t) such
that

V π
t = H(St , t)

The replicating condition is V π
T = f (ST ), and this condition is

satisfied if
H(x ,T ) = f (x).

As the portfolio and the option are equivalent, the price of the
option is the initial value of the portfolio, i.e. H(S0, 0). In order to
determine H and π = (at , bt) such that

V π
t = atBt + btSt = H(St , t)

we compute the stochastic differential of V π by two different ways,
and equate the results.



On one side, as S is a function of W , and H is a function of S , we
apply Itô’s formula, to obtain that

dV π = dH = (µSHx +
1

2
σ2S2Hxx + Ht)dt + HxSσdW . (2)

On the other side, as π is self financing, taking into account that
atBt = Ht − BtSt , we have

dV π = adB + bdS = raBdt + b(µSdt + σSdW )

= r(H − bS)dt + µbSdt + bSσdW .

= (rH + (µ− r)bS) dt + bSσdW . (3)

We now equate the coefficients of dW in (2) y (3). We obtain:

bt = Hx(St , t).



Black-Scholes equation
After this we equate the coefficient in dt, and after some simple
transformations, we get

rSHx +
1

2
σ2S2Hxx + Ht = rH.

Furthermore, as we seek for a replicating portfolio, we have the
additional condition H(ST ,T ) = f (ST ). Both conditions are
verified if we find a function H such that

1
2σ

2x2Hxx(x , t) + rxHx(x , t) + Ht(x , t) = rH(x , t)

H(x ,T ) = f (x)

This is Black-Scholes equation. It is partial differential equation
(PDE), where the replication condition gives the border condition.
The first obtained contidion

bt = Hx(St , t)

is relevant also, as it gives the amount of stock necessary to
replicate the option, i.e. the hedge.



It is not difficult to verify that this PDE has a closed solution,
given by

H(x , t) = xΦ(x+(x , t))− e−rT K Φ(x−(x , t))

where

x+(x , t) =

(
log

xer(T−t)

K
− 1

2
σ2(T − t)

)
/(σ
√

T − t)

x−(x , t) =

(
log

xer(T−t)

K
+

1

2
σ2(T − t)

)
/(σ
√

T − t).

Finally, the value of the option is obtained with t = 0, getting

V (S0,T ) = S0Φ(x+)− e−rT K Φ(x−)

with

x± =

(
log

S0erT

K
± 1

2
σ2T

)
/(σ
√

T ).



Relevance of Black-Scholes formula

A key consequence of Black Scholes formula is that the price of the
option does not depend of the mean return µ of the risky asset.
There are three parameters that depend on the contract (S0,K ,T )
and two parameters from the economical model: r and σ. In order
to apply the formula this parameters must be determined:

I r can be obtained as the interest rate of US bonds with
similar expiration time T .

I σ is not observable, in practice a value of σ is obtained form
other option values quoted in the market. This is called the
implied volatility.



Theoretical consequences of BS formula

Key observation: As we have seen, in BS formula µ does not
appear, only r . Let us transform the equation for the risky asset in
the following way:

dS

S
= µdt + σdW = rdt + σd

(
Wt +

µ− r

σ
t

)
= rdt + σdW ∗

t

were we deonte

W ∗
t = Wt +

µ− r

σ
t.

Here we require the help of Girsanov’s Theorem



Risk neutral probability and Girsanov Theorem

Theorem Given a Wiener process W defined in a probability space
(Ω,F ,P), there exists a probability measure Q such that the
process

W ∗
t = Wt +

µ− r

σ
t = Wt + qt,

is a Wiener process under Q. Furthermore the measures P and Q
are equivalent, with Radon-Nykodym density given by

dQ

dP
= exp

(
−qT − 1

2
q2WT

)
This suggest to consider the model

dB

B
= rdt,

dS

S
= rdt + σdW ∗

in the probability space (Ω,F ,Q), where W ∗ is a Wiener process.



It is important to note that under Q the mean return of both the
non-risky and risky asset is the same, r .
We have seen that the respective solutions of this equations are

Bt = ert , St = S0 exp
(
σW ∗

t + (r − σ2/2)t
)

Whe then have

St

Bt
= S0 exp

(
σW ∗

t − σ2t/2
)

is a Q-martingale (4)

Observe that Q is the only measure that assures this property (4).
Summarizing:

I we change P by Q, µ by r , W by W ∗.

I both assets B and S in the model have the same mean return
r under Q,



Let us interpret the meaning of the measure Q.
In order to do this we use the following properties of the stochastic
integral

I (1)
(∫ t

0 btdW ∗
t

)
t≥0

is a Q-martingale

I (2) If
dXt = atdt + btdW ∗

t

then
X is a Q-martingale if and only if at = 0.

Excercise: Verify that the value of the discounted portfolio is a
martingale under Q, that is

H(St , t)

Bt
is a Q-martingale.

Solution: We have H/B = e−rT H. By Itô’s formula,

d(e−rT H) = e−rT (−rHdt + dH)



As dH = rHdt + bSσdW ∗, we substitute to obtain

d

(
H(St , t)

Bt

)
= bStσdW ∗

t

verifying that the trend is null, and by property (2) we obtain that
the quotient is a Q-martingale.
As the martingales preserve the expectation, we deduce that the
price of the option with payoff f (ST ) satisfies

V (x ,T ) = H(S0, 0) = EQ(e−rT H(ST ,T )) = e−rT EQ(f (ST )),

were we use the final condition H(x ,T ) = f (x).
Conclussion: The price of the option in BS model is the
expectation of the payoff of the option under the probability
measure Q, that we call risk-neutral probability.



Computing BS formula for a call option
Let us compute the price V (S0,T ) of a call option. We know that

V (x ,T ) = e−rT EQ(f (ST )).

Under Q, with S0 = x , we have

ST = S0 exp(σW ∗
T −

1

2
σ2T + rT ).

We use that

I W ∗
T ∼

√
T Z ∼ N (0,T ), si Z ∼ N (0, 1).

I α =
log(S0erT /K)−σ2T/2

σ
√

T
= x−.

We have

V (x ,T ) = e−rT

∫ +∞

−∞

(
S0eσ

√
Tu− 1

2
σ2T+rT − K

)+
φ(u)du

= e−rT

∫ +∞

−α

(
S0eσ

√
Tu− 1

2
σ2T+rT − K

)
φ(u)du



=S0

∫ +∞

−α

1√
2π

eσ
√

Tu− 1
2
σ2T−u2/2du − Ke−rT

∫ +∞

α
φ(u)du

=S0

∫ +∞

−α

1√
2π

e−(u−σ
√

T )2/2du − Ke−rT

∫ α

−∞
φ(u)du

=S0P(Z + σ
√

T ≥ −α)− Ke−rT P(
√

T Z ≥ −α)

=S0P(Z ≤ α + σ
√

T )− Ke−rT P(Z ≤ α),

that is the Black-Scholes formula because α + σ
√

T = x+.


